
4 | Interrupt Inside

CODE
QUALITY

ASSURANCE
WITH PMD

BY: Andreas Dangel
Software Engineer
MicroDoc GmbH

Developing new software is great. But,
writing software that is maintainable and
sustainable is not so easy. Luckily, there

are tools available that can help you achieving
better code quality. One of these tools is PMD.

An extensible static code analyser
for Java and other languages

|5Interrupt Inside

SOFTWARE

>>

WHAT IS PMD?
PMD is a static source code analyser. It
scans your source code and searches
for patterns, that indicate problematic
or flawed code. Sometimes it is just a too
complex solution which might increase
maintenance costs in the long term or
it might be a indication of a real bug. In
that sense, PMD can be seen as another
pair of eyes, that reviews your code.

For example, PMD can be used to find
usages of the printStackTrace() method,
which is often generated by the IDEs
when surrounding a statement with a
try-catch-block. Just printing the stack-
trace might result in swallowing the
original exception, since the output
might end up somewhere. Ususally such
output should be logged with the appro-
priate logging framework. PMD provides
the rule AvoidPrintStackTrace, which
detects such cases. See figure 1.

The abbreviation “PMD” is not exactly
defined, it is actually a backronym. But
“Programming Mistake Detector” or
“Project Mess Detector” are the most
logical meanings. However, the tool is
usually known and referred to simply as
“PMD”, sometimes with the tagline “Don’t
shoot the messenger”. See Figure 2 for
the official logo.

Figure 1: Example for AvoidPrintStackTrace

be written that only apply to a specific
type. Otherwise, the rule would need to
“guess” and assume the type by looking
at the type name only and do a simple
string comparison. If the project has an
own class with the same name, then we
might mix up the classes. A concrete
example can be seen in unit tests: PMD
provides several rules for JUnit. But if the
project uses a different test framework
with the same class names (but obvious-
ly different packages), then these rules
would find issues, which are maybe irrel-
evant for the other test framework.
There are other big players for code
quality tools on the market like Sonar-
Qube that support a more integrated
solution to also monitor quality improve-
ments or regressions over time.

When PMD is integrated into the build
pipeline, it can act as a quality gate. For
example, if rule violations are detected,
the build can be failed or the commit
can be rejected. This can be used to
enforce a specific quality goal. The build
pipeline could also be configured to only
make sure, that no new rule violations
are introduced, so that the code quality
doesn’t degrade and hopefully improves
over time.

There is one other component in PMD,
that is often overseen: CPD - the Copy-
Paste-Detector. This is a separate com-
ponent, that searches for code duplica-
tions in order to follow the DRY principle
(Don’t Repeat Yourself).

OVERVIEW / HOW DOES IT WORK?
PMD analyses the source code by first
parsing it. The parsing process consists
of the two steps:

• lexing, which produces a stream of
tokens

• and parsing, which produces an ab-
stract syntax tree (AST).

This tree is the equivalent representa-
tion of the source code and has the root
node “Compilation Unit”. In Java, you can
define multiple types in one source file
(as long as there is only one public) and

Figure 2: The PMD logo

The patterns, that PMD is searching for,
are defined by rules. PMD is shipped
with more than 250 built-in rules, that
can be used immediately.

When the rules detect a problematic
piece of code, a rule violation is report-
ed. Furthermore, own rules can be de-
veloped in order to adapt PMD to spe-
cific project requirements. With so many
possible rules, it is clear, that one cannot
simply enable all rules. Some rules even
contradict each other. And some rules
just have different coding conventions in
mind, that might not be suitable for the
concrete project at hand.

In the field of code analysers and so
called linters, there are other prod-
ucts available. For Java projects, often
checkstyle is used in order to enforce
a common (project- or company-wide)
code style. Having a common code style
helps a lot if multiple developers work-
ing together on the same project, since
each part of the project is then be read
and skimmed as easy as any other part
- regardless of the author. Checkstyle
concentrates on the source code di-
rectly including whitespace checks like
correct indentation and also documen-
tation via JavaDoc comments.

PMD doesn’t support whitespace
checks, but it has basic support for com-
ments, like enforcing the existence of
JavaDoc comments for classes or fields.
Other tools like FindBugs and its suc-
cessor SpotBugs are analysing the com-
piled bytecode of Java projects instead
of the source code. They have therefore
access to the compiler optimised code
and might see slightly different code.
Moreover, SpotBugs can rely on the
structure of a classfile and does not
need to deal with syntax errors. Spot-
Bugs can only be used after the project
has been compiled, while Checkstyle
could be run before.

PMD can be seen in between these two
tools: While the starting point for PMD
is also the source code, PMD takes ad-
vantage of the compiled classes. This
feature in PMD is called “type resolution”
and it helps PMD to understand the
analysed source code better in order to
avoid false alarms. E.g., if PMD knows the
return type of a method call, rules can

6 | Interrupt Inside

classes can be nested. Classes itself can
have methods, which in turn have zero
or more statements. Figures 3 and 4
show a simple java class and the corre-
sponding AST.

When the source code could be parsed
to an AST, then the syntax is correct.
Nowadays, it is recommended to use
PMD after the project has been com-
piled in order to take advantage from
type resolution. This means that PMD
can concentrate on valid syntax, e.g.
if the parsing fails, the analysis of this
source file is simply skipped. Techni-
cally an own grammar for JavaCC is used
to implement the parser for the Java
language. Therefore, failing to parse a
specific source file might actually indi-
cate a bug in PMD’s own Java grammar
and does not necessarily mean, that the
source code is not valid.

After that, the AST is enriched by a
couple of visitors: First, the qualified
names for the types, that are defined
in the source code, are determined.
This is later helpful when referencing
this class (and its nested classes and
lambdas) itself. Second, the symbol
facade visits the AST. It searches for the
fields, methods and local variables and
looks up their usages within the scope
of this source file. The information col-
lected in this step is made available to
the rules, e.g. they can easily figure out,
if a (private) field or method is used or
not. The found variables are organised
in different scopes, that are nested. The
third visitor is the “Data Flow” facade. It’s
goal is to follow variable definitions, as-
signments and reassignments and their
accesses throughout the program flow.
It allows to detect anomalies such as as-
signing a new value to a variable after it
has been accessed. It’s currently limited
to a single method. The last visitor is the
“Type Resolution” facade. It traverses the
AST and resolves the concrete Java types
of variable declaration, method parame-
ters, and classes whenever a referenced
type is used. It uses the compile-time
classpath (also known as the auxiliary
classpath) of the project that is being
analysed.

Now, after the AST has been created

Figure 3: Source code of the AST example

be implemented using a quality gate in
SonarQube.

PMD should be integrated into the de-
velopment process as early as possible.
The earlier PMD is used, the less issues
need to be fixed later on. Therefore
there are also IDE plugins that execute
PMD while developing code. For Eclipse,
there are today 3 different plugin imple-
mentations:

• The official pmd-eclipse plugin
• eclipse-pmd
• and the qa-eclipse-plugin.

For other IDEs and editors, there are pl-
ugins, too. For the full list, see the Tools

and filled with additional information,
the rules are executed. While all rules
for one file are executed one after an-
other, the analysis of multiple files (and
ASTs) is executed multi-threaded. Each
rule has the possibility of reporting rule
violations, which are collected in reports.
The violation contains the information
about the rule, the location (like line and
column in the source file) and a mes-
sage. In the end, the reports are trans-
formed into the desired output format,
such as XML or HTML.

When utilising PMD for a project, there
are a few different approaches possible.
For greenfield projects, it’s a no-brainer:
PMD is active with a basic set of rules
from the very beginning. So, every code,
that is added, will be checked by PMD.
For projects with an existing code base,
the situation is most likely different. It
can be overwhelming, if a whole bunch
of rules are activated at once. You might
be drowning in violations and it
is not clear, which one to fix first. For this
situation, an incremental approach is
recommended: Prioritising and enabling
one rule at a time.

Alternatively, all the selected rules can
be enabled at once and the current
number of violations are monitored. The
goal is then, to reduce the violations with
every commit and not introduce new
violations. This however requires sup-
port from the build environment and is
not possible with PMD alone. But it can

Figure 4:
AST example

Figure 5:
Visitors

SOFTWARE

|7Interrupt Inside

/ Integrations documentation page. Es-
pecially if your project is using Apache
Maven as the build tool and you are
using Eclipse, you should have a look at
m2e-code-quality plugins, which trans-
form the configuration from your Maven
project files and make them available
for the PMD, Checkstyle and Findbugs
plugins in Eclipse. This means, you can
configure your code quality tooling
within your build tool and it is automati-
cally working in Eclipse.

To compile, build and package software
projects, usually build tools are used,
such as Apache Maven, Gradle or Ant.
For Ant, PMD provides an own task, that
can be used. For the other build tools,
plugins are existing, that can execute
PMD. And most importantly: these pl-
ugins can fail the build, acting as a simple
gate keeper. The Maven PMD Plugin can
create a report for the project site and
also contains a check goal, to fail the
build, if PMD rules are violated. It also
supports CPD, the copy paste detector.

All the previous tools are good, if you
are building the project locally. But if a
whole team is working on the project to-
gether, there is usually a central continu-
ous integration server. Basically, such CI
servers could just execute the build tool
with its configuration for PMD, but they
often provide a little bit more support
for code quality tools like PMD: Since
they regularly build the project and can

keep a history, they allow to compare
the reports generated by PMD from
build to build. This allows you to see the
development of the code quality over
time like new introduced violations or
violations that are resolved. For Jenkins,
there is a PMD Plugin available, which
produces a simple graph of violations.

Nowadays, such CI servers are avail-
able as a service, too. Especially for
open source projects they are often
free to use. PMD itself uses e.g. Travis
CI. GitHub as a code hosting platform
provides integrations with various 3rd
party services, that can be enabled. Two
such services already use PMD to offer
their service: Code Climate and Codacy.
These services can also be integrated for
verifying pull requests to get early feed-
back. Since these service also create
a history, you can see the results over
time.

PMD provides many different built-in
rules. Since PMD 6, these rules are or-
ganised into 8 categories: Best Practic-
es, Code Style, Design, Documentation,
Error Prone, Multithreading, Perfor-
mance, and Security. The recommended
approach is, to create an own ruleset,
which references the rules that should
be used for the specific project. This
ruleset should be part of the project,
so that it can be easily shared between
developers and build tools. For Maven
projects, often an extra module with the

name “build-tools” is created, which can
be used as a dependency. This is de-
scribed in the Multimodule Configura-
tion for the maven-pmd-plugin.

You might also find yourself in a situa-
tion, that you need a very specific rule,
which is not available in PMD itself. Since
it is very specific to your project, it might
not be even useful outside of your pro-
ject. Therefore you can define own rules,
and the code for these custom rules nat-
urally goes into the “build-tools” module
as well.

The ruleset can also contain project
wide file exclusion patterns, e.g. if you
don’t want to analyse generated code.

While referencing the existing rules in
your ruleset, you can configure them
exactly to your needs. Many rules can
be easily customised via properties.
The rules also define the message, that
appears in the report, if a violation is
detected. This message can also be
overridden and customised. A typical
customisation is the priority. You can
give each rule a specific priority and
during the build, you can decide to fail
the build because of an important rule
violation but ignore other rules. You can
also add own rules. See Figure 6 for an
example of a custom ruleset.

FEATURES
It’s now time to look at a few selected

Figure 6: Example of a custom ruleset

SOFTWARE

8 | Interrupt Inside

features, that PMD provides. The first
feature is the support for XPath based
rules. Since the AST is a tree structure, it
can be dealt with like a XML document.
The document can then be queried
using XPath expressions, to find nodes
within the AST, that match certain cri-
teria. This provides an alternative API
to develop rules, if you don’t want to
implement a rule using the visitor pat-
tern to traverse the AST. This is a very
convenient way to create ad-hoc rules.
There is even a graphical rule designer
to make it easier to develop XPath rules.
The designer shows the parsed AST and
executes a given XPath query. You can
see the matched nodes directly. In the
end, the developed XPath expression
can be exported as a custom PMD rule
in XML format, that you can add to your
own ruleset. Since the rule designer dis-
plays the AST, it is also a valueable tool
for developing rules in Java using the
visitor pattern. See Figure 7 for a screen-
shot of the designer. This way of provid-
ing access to the AST and reuse XPath to
write custom rules is a unique feature of
PMD, that does not exist in other static
code analysers.

classpath, then PMD can attach a con-
crete instance of Class<org.slf4j.
Logger> to that node in the AST and
the rule can access it. The rule can
now first verify, that this field really is
a logger, instead of simply relying on
naming conventions of the field name
or the simple class name. This helps
greatly to reduce false positives for rule
violation detection. In the example code
snippet, PMD is correct to suggest to
use the slf4j placeholder syntax (“...
message: {}”, arg), but PMD would
be wrong, if the logger would be of a dif-
ferent type. Since the rule has access to
the concrete class instance, it can even
use reflection to gather more informa-
tion as needed. This type resolution
does not only work for 3rd party librar-
ies, but in the same way it works within
the same project, that is being analysed
by PMD. That’s why it is necessary, that
the project is compiled first before PMD
is executed. This means that references
to other classes within the same project
are resolved exactly the same way and
the concrete class instances are made
available.

There are a couple of rules, that make

super class and are missing a @Over-
ride annotation.

Type resolution has been available for a
long time now in PMD. However, it is still
under development. There are currently
limitations for determining the types of
method parameters, especially when
overloading is in use and generics come
into play.

The next feature is quite new: Metrics.
It was added in 2017 during a Google
Summer of Code project and provides a
clean access to metrics of the analysed
source code.

The metrics are e.g. access to foreign
data (ATFD) or weighted method count
(WMC). There are more metrics avail-
able already and the whole framework
is usable by other languages, too. The
metrics can be accessed by Java rules
as well as by XPath rules. In the easi-
est case, these metrics can be used to
detect overly complex or big classes,
such as in the rule “CyclomaticComplex-
ity”. Multiple metrics can be combined to
implement various code smell detectors
such as “GodClass”.

The next step in this area is to support
multi file analysis. Currently, PMD looks
only at one file, but for metrics it would
be interesting to relate certain num-
bers of one class against, e.g., the total
number of classes within the project.
There are also benefits for the symbol
table, if it has a view of the whole project.
This will then allow to do full type reso-
lution. Each rule has then access to all
information which makes the rules more
robust to false positives and also allows
to find otherwise ignored special cases.
Implementing this involves sharing data
between the different file analysers -
possibly involving an additional process-
ing stage. The challenge is of course,
to provide this functionality and not af-
fecting the performance of the analysis
negatively.

BEYOND JAVA
PMD started as a static code analyser
just for the Java programming language
only. This was the status for PMD version
up to and including 4.3 (except for a little
support for JSP). With PMD 5, a big re-
factoring took place, in order to support
multiple languages. And with the initial
release of PMD 5, three new languages
were included: JSP, JavaScript (aka. ec-
mascript) and XML. Later on, support
for PLSQL and the templating language
Apache Velocity has been added while
keeping the Java support up to date. The
last big addition was support for Sales-
force.com Apex.

Now, PMD supports in total 10 different
languages including rules. Most rules
are for Java, of course. Adding a new
language takes quite some effort, but
it is described in the step-by-step guide
“Adding a new language”. It involves in-

Figure 7: PMD Designer

SOFTWARE

Another feature of PMD is the so called
type resolution. As explained above,
type resolution happens as an extra
step after parsing the source code. The
goal is, that the AST is enriched with con-
crete type information whenever possi-
ble. Consider the following source code:

Via type resolution, the field declaration
for LOG is assigned the type Logger,
which (through the import) is identi-
fied as org.slf4j.Logger. If the
library “slf4j-api” is on the auxiliary

use of type resolution. And more rules
will make use in the future, since type
resolution is enabled by default for new
Java rules. For example, the rule “Loose-
Coupling” finds usages of concrete col-
lection implementations which should
be replaced by the collection interface

(e.g. use List<> instead of Array-
List<>). The fairly new rule “Missin-
gOverride” actually uses type resolution
and reflection to figure out, which meth-
ods are overriding methods from the

|9Interrupt Inside

tegrating the language specific parser,
mapping the language AST to the ge-
neric PMD interface types and last, but
not least, writing new rules. Most of the
PMD framework can be reused, so you’ll
immediately benefit from the possibil-
ity, to write XPath based rules for your
language. The Copy-Paste-Detector
(CPD) on the other hand supports many
more languages. This is, because you
only need to support a language specific
tokeniser, which is much simpler than a
full language grammar with productions.
PMD provides even a “AnyLanguage”
for CPD, which basically tokenises the
source code at whitespaces. Language
specific support is needed to improve
the results of CPD, e.g. correctly identi-
fying keywords and statement separa-
tors. With more effort, there is also the
possibility to ignore identifier names
during copy-paste-detection. This allows
then to find duplicated code, which only
differs in variable names, but is other-
wise structurally the same. This feature
however is only available for Java at the
moment.

THE PROJECT
The following is a summary of the his-
tory of PMD that Tom Copeland wrote
in the book “PMD Applied. An Easy-To-
Use Guide for Developers”. It covers the
years 2002 till 2005.

The project PMD was started in Summer
2002. The original founders are David
Dixon-Peugh, David Craine and Tom
Copeland. The goal was to replace a
commercial code checker, which these
three guys were using in a government
project in the US. They decided to write
their own code checker and got ap-
proval to open source it. Now PMD was
living on SourceForge. In November
2002, PMD version 1.0 was released
with already 39 rules and a copy/paste
detector. In March 2003, thanks to Dan
Sheppard, XPath rules were introduced
with PMD 1.04. Since PMD 1.3 (October
2003), the BSD license is used, which
helped a lot to adopt it. Since then it has
been integrated into many products.

The copy/paste detector has been re-
written a couple of times and improved
in performance. With every release of
PMD, new rules or report formats have
been added and existing rules fixed.
With PMD 2.0 (October 2004) the data
flow analysis component has been
added. With PMD 3.0 (March 2005) sup-
port for Java 1.5 was added.

Java 1.6 was added with PMD 3.9 (De-
cember 2006), Java 1.7 with PMD 4.3
(November 2011), Java 8 with PMD 5.1.0
(February 2014), Java 9 with PMD 6.0.0
(December 2017), Java 10 with PMD
6.4.0 (May 2018), Java 11 with PMD 6.6.0
(July 2018), and Java 12 with PMD 6.13.0
(March 2019).

A big step happened between PMD 4
and 5: A major refactoring took place in

order to properly support rules for mul-
tiple languages. This introduced many
breaking API changes and was released
in 2012. Also with PMD 5, Apache Maven
is being used as the primary build tool
instead of Ant. Support for PLSQL was
added in February 2014 with PMD 5.1.0.
With PMD 5.2.0 (October 2014) the code
was completely modularised into a core
module and several language modules.
This made it easier to add new languag-
es. With PMD 5.5.0 (June 2016) Sales-
force.com Apex has been added. With
PMD 6.0.0 another small, but important
refactoring took place. It has unfortu-
nately a bigger impact on end users: All
the rules have been categorised, so that
they are easier to find. They have been
moved into different rulesets. However,
we are keeping the old rulesets for back-
wards compatibility, so that the existing
custom rulesets still continue to work.

Over the last years, the project gradually
moved more and more infrastructure
from SourceForge towards GitHub. The
complete subversion repository has
been converted to git. It contains the full
history back to the year 2002. While at
the beginning every sub-project was in
the same repository, we have now sev-
eral separate repositories, e.g. for the
eclipse plugin or other extensions.

The move to GitHub was a step forward
in terms of presence and attracting new
contributors. The GitHub web interface
is more user friendly, easier to use and
feels faster than SourceForge. GitHub
especially encourages contributions
through the concept of pull requests.
GitHub is now the primary location for
the source code and the issue tracker.
On SourceForge, we still have the mail-
ing list running and a webspace and the
archive of old releases. There are other
services PMD uses, e.g. travis-ci as a
build server. It builds every push and de-
ploys the snapshot via the OSS Reposi-
tory Hosting service by Sonatype. For
releases, this build server is even able
to deploy the final artifacts directly to
Maven Central.

Also, every pull request is built automati-
cally. Other services are e.g. coveralls for
test coverage and BinTray for hosting
the eclipse plugin update site.

In 2017, PMD participated the first time
in Google Summer of Code. This is a
student stipend program offered by
Google. Students all around the world
have the opportunity to work during
semester break on various open source
projects. Open source organisations
provide projects and mentors and the
students apply for a project with a pro-
posal. In 2017 two students worked on
type resolution and metrics. In 2018
PMD is participating again.
As of today, the project has 3 active
maintainers, about 100 different con-
tributors, 500 merged pull requests. A
cording to cloc it contains about 100k

Java lines of code, surprisingly 88k XML
LOC (which probably are the test cases)
and many other types.

THE FUTURE
What’s left to do for PMD? Aside from
keeping the support for Java and other
languages up to date and fixing bugs,
adding new rules, adjusting additional
rules, there are a few topics, that sound
promising. In order to lower the barrier
of using PMD, specialised rulesets might
be useful.

There could be a “Getting Started”
ruleset, that has just enough generic
rules, that are useful for any project. This
might be the default ruleset and
could be a template for creating an own
customised tailored ruleset for the pro-
ject. There could also be use-case based
rulesets, the group the rules not by cate-
gory but by another topic, e.g. Unit test-
ing, Logging, Migration of library usages,
Android specific patterns.

Another interesting feature is autofixes.
Since PMD has the knowledge, where a
violation exactly is in the source code, it
is for some rules trivial to provide a fix.
The goal is, that PMD provides directly
the fixed source code, that can be con-
firmed in a IDE plugin and applied auto-
matically. Then, besides type resolution,
which is still not completely finished,
there is also the data flow analysis (DFA)
part. PMD has a good start for the DFA,
but it’s still very limited. A related feature
is control flow analysis. With that avail-
able, rules could be written which can
detect unused code.

Or rules, that verify that a specific guard-
ing method must be called before an-
other method. Having the call stack
available, would make this possible to
verify. This requires, similar to the men-
tioned multi file analysis, an overview of
the complete project that is being ana-
lysed.

And last, but not least, a possible future
feature could be cross language sup-
port. Since PMD already supports mul-
tiple languages, this would put multi-
language support onto the next level:
Some languages allow to embed other
languages, e.g. JavaScript inside HTML,
or PHP+HTML+JavaScript. Or there is
Salesforce.com VisualForce with Light-
ning.

When and if these features are im-
plemented is unknown. The project is
driven by volunteers and contributors
and all this depends on the available
time. New contributors are always wel-
come to work together and make PMD

SOFTWARE

WANT TO FIND OUT MORE?
Go visit https://pmd.github.io

